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1. Introduction

Bluetongue virus (BTV) is an orbivirus that is transmit-
ted by biting midges (Culicoides spp.) and causes trans-
boundary, internationally reportable disease with high
morbidity and mortality in susceptible animal populations.
Serious economic impacts result directly from decreased
animal production, as well as indirectly from resulting
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A B S T R A C T

Bluetongue (BT) is an insect-transmitted, economically important disease of domestic and

wild ruminants. Although only five of the 26 reported bluetongue virus (BTV) serotypes

are considered endemic to the USA, 10 exotic serotypes have been isolated primarily in the

southeastern region of the country since 1999. For an exotic BTV serotype to become

endemic there must be susceptible animal species and competent vectors. In the USA,

sheep and white-tailed deer (WTD) are the primary sentinel livestock and wildlife species,

respectively. In 2006, BTV-8 was introduced into Northern Europe and subsequently

overwintered, causing unprecedented livestock disease and mortality during the 2006–

2007 vector seasons. To assess the risk of the European strain of BTV-8 to North American

WTD, and understand the role they could play after a similar introduction, eight

bluetongue-seronegative WTD were inoculated with BTV-8. Body temperatures and

clinical signs were recorded daily. Blood samples were analyzed for BTV RNA with

quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR), serum

analyzed for BTV antibodies by cELISA, and tissues taken for histopathology and qRT-PCR.

All eight deer became infected and developed moderate to severe clinical disease from

days 8 to 15. Peak viremia was from day 7 to 10 with detectable titers through the end of

the study (28 days) in most deer. Serum antibody was detected by day 6, peaked by day 10

and continued through day 28. We conclude that North American WTD are highly

susceptible to BTV-8 and would act as clinical disease sentinels and amplifying hosts

during an outbreak.
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regulatory repercussions. Bluetongue (BT) poses a constant
disease threat to the livelihood of livestock owners.

While Culicoides midges feed on numerous domestic
and wild ruminants (Tabachnick, 2004), BT in the USA is
largely a disease of sheep, cattle, deer (Odocoileus spp.) and
pronghorn antelope (Antilocapra americana). In domestic
animals, clinical disease is primarily seen in sheep and
includes fever, nasal lesions and discharge, excessive
salivation, anorexia, dehydration, depression, coronitis,
facial edema, conjunctivitis, cyanotic (blue) tongue, and
secondary pneumonia with up to 50% mortality (Parson-
son, 1990). In wildlife, overt clinical disease is primarily
seen in white-tailed deer (WTD; O. virginianus) and
pronghorn antelope (Hoff and Trainer, 1978; Kocan
et al., 1987; Thorne et al., 1988; Stallknecht and Howerth,
2004). These wildlife species play important roles in the
epidemiology of BT outbreaks as sentinels, amplifying
hosts, and viral reservoirs in close proximity to sheep and
cattle grazing and watering areas. Similar to cattle, other
wild ruminant species may have histopathological indica-
tion of disease upon necropsy, but rarely show overt
clinical disease and are considered potential sub-clinical
viral reservoirs (Hoff and Trainer, 1972, 1978).

There are 26 reported serotypes of BTV, five of which
are considered endemic to the USA (BTV-2, 10, 11, 13, and
17) (Collisson and Barber, 1985). Morbidity and mortality
rates observed during outbreaks from different serotypes
are highly variable and with little to no serotype cross-
protection reported to date using current vaccine technol-
ogies, vaccination must be serotype-specific (Noad and
Roy, 2009). The global distribution of BTV serotypes has
changed drastically in the past 15 years, possibly as a result
of climate change (Purse et al., 2005, 2008; Gale et al.,
2010). The rapid spread of BTV-8 throughout Northern
Europe in 2006–2007 is particularly alarming as the risk to
livestock and wildlife was thought to be minimal or non-
existent. This was the largest single serotype outbreak ever
recorded with devastating disease and mortality in sheep
and cattle. In Germany alone, the 2007 cases in cattle,
sheep and goats were 26,772, 32,116 and 209 with case-
fatality rates of 13%, 42% and 26%, respectively (Conraths
et al., 2009). It is estimated that the losses to the
agriculture industry was over 200 million Euros (Velthuis
et al., 2010).

The United States is at risk for similar incursions. Since
1999, 10 exotic BTV serotypes have been detected in the
southeastern region of the country: BTV-1, 3, 5, 6, 9, 12, 14,
19, 22, and 24 (Ostlund, 2010). Introduction of these new
serotypes may have resulted from the importation of
infected livestock (Hoar et al., 2004), or the arrival of
infected midges via wind currents (Sellers, 1980; Sellers
and Maarouf, 1989), shipping containers, or cargo holds of
ships as has been reported for some mosquito introduc-
tions (Linthicum et al., 2003; Furumizo et al., 2005).

In order to assess whether an exotic BTV introduction
into the USA will result in a widespread outbreak and
possibly become endemic, it is important to ascertain
whether the widely distributed, sentinel domestic (sheep)
and wildlife (WTD) ruminant species are susceptible. The
aim of this study was to determine the susceptibility of
WTD to the Northern European strain of BTV-8 to assess

the potential disease risk to this wildlife species and to
better understand the epidemiological role they would
play, should an introduction occur.

2. Materials and methods

2.1. Virus inoculum

Virus (BTV-8/NET2007/01) was obtained from the
Central Veterinary Institute of Wageningen University,
Lelystad, the Netherlands. The BTV-8 inoculum was EDTA-
blood harvested from Holstein Frisian cow NL441689187
from Bavel, Netherlands; the first detected case of BTV-8
after overwintering (GenBank GQ506451–GQ506460)
(Backx et al., 2007). Briefly, cell fractions of the harvested
EDTA-blood were washed three times with phosphate
buffered saline (PBS) containing 2% fetal bovine serum
(FBS; Sigma–Aldrich, St. Louis, MO, USA), resuspended in
the original volume, and stored in aliquots at �80 8C.
Because the viral inoculum was infected blood and a not
cell culture-adapted stock, it was necessary to use real time
qRT-PCR to determine the relative titer, rather than cell
culture titration methods. Mean threshold cycle (Ct) values
(triplicate) were compared to a dilution series of known
BTV stock to calculate RNA concentrations. Virus particle
determinations, relative to RNA concentrations, were then
calculated as described (Akita et al., 1992).

2.2. White-tailed deer (WTD)

Ten WTD fawns (2–14 days old) were obtained from a
private deer facility in Missouri, USA. Fawns were raised
and weaned at the Colorado State University (CSU), Animal
Population Health Institute’s Wildlife Research Facility,
Fort Collins, CO, USA. Animals were raised according to a
protocol approved by CSU’s Institutional Animal Care and
Use Committee (IACUC). Fawns were vaccinated subcuta-
neously (SC) with 1 ml Clostridium A toxoid (Novartis
Animal Health, Greensboro, North Carolina, USA),
dewormed with ivermectin (ProMectin1, Vedco, St.
Joseph, MO, USA; 0.2 mg/kg, SC), and fenbendazole
[Safe-guard1, Intervet/Schering-Plough, Summit, NJ,
USA; 5 mg/kg orally (PO)] and given a 4-day course of
sulfamethazine sodium (Sulmet1, Boehringer Ingelheim
Vetmedica, St. Joseph, MO, USA; 247.5 mg/kg day 1 and
then 123.75 mg/kg days 2–4 once a day PO) for treatment
and prevention of coccidiosis or other bacterial/parasitic
infections. At one month, weaning began and all animals
were given 3 ml Clostridium A toxoid as a SC booster.
Additionally, they were given a 7-way clostridial vaccine
(Ultrabac1 7; 2.5 ml SC) and tetanus toxoid (Colorado
Serum, Denver, CO, USA; 1 ml SC), again dewormed and
given anti-parasitic treatment with Ivermectin, sulfa-
methazine sodium, and fenbendazole. At approximately
9 months of age, the deer were sedated with an
intramuscular combination of medetomidine hydrochlo-
ride (Wildlife Pharmaceuticals Inc., Fort Collins, CO, USA;
0.1–0.2 mg/kg), azaperone (Wildlife Pharmaceuticals Inc.;
0.1–0.2 mg/kg), and butorphanol tartrate (Wildlife Phar-
maceuticals Inc.; 0.22–0.34 mg/kg) and transported to the
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, BSL-3 Animal Disease Laboratory, Fort Collins, CO,
.

 Animal experiment

Eight BTV-seronegative deer were sedated with xyla-
e (1–2 mg/kg) and injected with BTV-8/NET2007/01
ine blood stock virus subcutaneously in the neck (1 ml)
 inner left leg (1 ml). Two deer were sham inoculated
h PBS to serve as uninfected controls and housed with
cted animals to examine direct contact transmission.
y temperatures and clinical signs (depression, loss of
etite, oronasal discharge, respiratory distress, facial
ma) were scored using a scale from 0–3 (0 = absence;
mild; 2 = moderate; 3 = severe) (van Gennip et al., 2012)

 recorded daily. Blood samples for cELISA and qRT-PCR
ays were taken at specific time points from all deer. Two
llenged animals were sedated with xylazine as above

 euthanized with pentobarbital (IV) at the anticipated
k of viremia (day 8), two were euthanized for humane
sons due to deteriorating clinical condition (one each on

 12 and 15), and the remaining were held until day 28.
ing necropsy, gross pathological findings were noted
 samples of liver, spleen, lung, heart, kidney, intestine,

ndibular lymph node, mesenteric lymph node, and
enal gland were collected and frozen for subsequent
-PCR testing, or fixed in 10% buffered formalin (Sigma–
rich), embedded in paraffin (Fisher Scientific, Houston,

 USA) and sectioned (5 mm) for hematoxylin and eosin
her Scientific) histopathological analysis. All animal
nipulations were in compliance with the CSU IACUC
delines. All work with infected animals was performed
er BSL-3 containment conditions.

 Real time PCR

Due to the unpassaged nature of this recent BTV-8
ine virus isolate, cell culture-based titration assays

re not feasible. Thus, qRT-PCR was utilized as the
ary method to quantitate virus in the original

culum and in blood and tissue samples. Viral RNA
s extracted from blood using the MagMAXTM Blood RNA
ation Kit (Ambion, Austin, TX, USA) according to
nufacturer’s instructions and stored in round bottom
well plates at �80 8C. For tissue RNA, 50 mg of tissue
re individually homogenized by bead beating (Tissue-
er, Qiagen, Germantown, MD, USA) in 500 ml PBS with

 4.5 mm stainless steel ball bearings. Total RNA was
racted from 100 ml of homogenate using the Total Viral
A Isolation Kit (Ambion) according to manufacturer’s
tructions and stored in round bottom 96-well plates at
0 8C.
Quantitative real-time reverse transcriptase PCR (qRT-
) (Wilson et al., 2009) was performed on blood and
ue RNA samples, in triplicate (Applied Biosystems
0, Foster City, CA, USA). Reactions contained 5 ml
plate and 20 ml master mix from Ag-Path IDTM RT-PCR

gents (Ambion) for 40 cycles. BTV-8 was detected using
er sequences specific for the S10 (NS3) and M5

1) genes which are highly conserved within the
ogroup and highly expressed. Primer sequences were

TTAAGCCTCCTAGGTCACTTTTCAA (forward), AAAGCTG-
CATTCGCATCGT (reverse), with CACATCATCAC-
GAAACGCTTCTGCG-50CFO 560 and 30BHQ-1 (probe) for
S10; GATTGCTTCACGGCCTCAT (forward), TTGGCAAAG-
GAGGCAATGT (reverse), with TGCACCCCGCACCGCTTC-
50CFO 560 and 30BHQ-1 (probe) for M5. Additionally, the
house-keeping gene b-actin was used as an internal, same
tube control using primers as previously described
(Moniwa et al., 2007). As above for the inoculum, mean
Ct values (triplicates) of the deer samples were compared
to known BTV stock concentrations to calculate RNA
concentrations. Virus particle determinations relative to
RNA concentrations were calculated as described (Akita
et al., 1992) and are reported as log10 particles/ml of blood
or tissue homogenate.

2.5. Detection of infectious virus

Due to the non-adapted nature of the BTV-8 inoculum
to cell culture systems, blind passages of virus from blood
samples were performed to obtain cytopathic effect (CPE)
and confirm the infectious virus as the original viral
inoculum by qRT-PCR and sequence analysis. Day 8 blood
samples (1 ml each) from all inoculated deer were
sonicated (Q700; Qsonica, Newtown, CT, USA) for 3 min
with 5 s pulses at 100 mA and centrifuged for 10 min at
10,000 � g. Cleared supernatants (500 ml) were used to
inoculate T-25 flasks (Corning, Corning, NY, USA) contain-
ing baby hamster kidney (BHK; ATCC, Manassas, VA, USA)
cell monolayers grown in Dulbecco’s modified Eagle’s
medium (DMEM; Sigma–Aldrich) supplemented with 10%
FBS (Sigma–Aldrich) and 100 U/ml penicillin, 100 mg/ml
streptomycin sulfate (Sigma–Aldrich). Flasks were incu-
bated at 37 8C for 5–7 days and examined for CPE. CPE
flasks were freeze–thawed and 2 ml used to inoculate fresh
cells twice more for a total of three blind passages. A 1 ml
aliquot was used from each passage for RNA extraction and
BTV-8 qRT-PCR as described above. Additionally, viral RNA
was extracted, as above, from the blood of deer #15
(euthanized day 8) and the VP2 gene, which confers
serotype identity and has the most variable genomic
region among the serotypes (Roy, 2001), was sequenced
and compared with the original inoculum (Maan et al.,
2010; van Gennip et al., 2012). Four forward and three
reverse primers were used for full gene coverage. Forward
primers were VP2-1F ATGGAGGAGCTAGCGATTCCGAT;
VP2-620F AAATGCGGAACGTGCATCAACGAG; VP2-1356F
TGCGATCTGTTCCCTGAGGATGAA; and VP2-1972F AACA-
CCCAACAATTGATCCCAGCG. Reverse primers were VP2-
2903R CTATACATTGAGCAGCTTAGTTA; VP2-1837R CGCC-
TTGAAACAATCCCTGCGTAA; and VP2-643R CTCGTTGATG-
CACGTTCCGCATTT.

2.6. Serological analysis

Serum samples from experimentally infected deer were
tested for BTV antibody using a previously published
antigen capture enzyme-linked immunosorbent assay
(cELISA) (Mecham and Wilson, 2004). Briefly, the wells
of Immunlon II microtiter plates (Dynatech Laboratories,
Inc., Chantilly, VA, USA) were coated overnight at 4 8C with
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polyclonal rabbit anti-BTV serum. Antigen was then
captured in the wells by addition of baculovirus expressed
BTV VP7 protein. Test serum samples, in triplicate, were
diluted 1:5 in PBS containing 0.1% bovine serum albumin
(BSA; Sigma–Aldrich) in the microtiter plate wells (final
volume of 50 ml/well), followed by the addition of 50 ml/
well of diluted mouse monoclonal antibody specific for
VP7 of BTV. This was followed by sequential reactions with
biotinylated goat anti-mouse antibody (Biogenex, Fre-
mont, CA, USA) and peroxidase-conjugated streptavidin
(Biogenex). Measurement of optical density (OD), follow-
ing addition of ortho-phenylene diamine (OPD) substrate
(Sigma–Aldrich), was used to calculate percent inhibition
(PI): PI = 100 � (OD492 nm test serum/OD492 nm negative
serum) � 100. Pre-infection sera were used to determine
the OD negative serum values. Sera were also tested for
antibody to the related serologically cross-reactive epizo-
otic hemorrhagic disease virus (EHDV), as determined
using an antigen-capture cELISA to that virus (Mecham and
Wilson, 2004).

3. Results

3.1. Clinical observations

Clinical signs in WTD were scored based on severity (van
Gennip et al., 2012) and included depression, loss of
appetite, nasal discharge, respiratory distress, facial edema,
conjunctivitis, conjunctival erythema, excessive salivation,
and elevated rectal temperatures (Table 1; Fig. 1). Clinical
disease peaked from 8 to 15 days post inoculation (dpi) and
was typically cleared by 21 dpi in surviving animals. Clinical
signs often associated with BT that were not seen in the
experimentally infected WTD included oronasal lesions,
coronitis, and cyanotic (blue) tongue.

Two randomly chosen deer (#15 and #23) were
euthanized during the anticipated peak of viremia
(8 dpi) to examine virus distribution in tissues. The livers
of both deer had mild, chronic portal hepatitis and
multifocal chronic interstitial nephritis and their lungs
had mild, diffuse mononuclear interstitial pneumonia.
Additionally, two deer (#21 and #6) had to be euthanized
during the peak of their clinical disease for humane
reasons. Deer #21, euthanized at 12 dpi, had severe nasal
discharge, excessive salivation, and respiratory distress.
Histopathological findings included mild, chronic portal

hepatitis and mild, diffuse mononuclear interstitial pneu-
monia. Deer #6, euthanized at 15 dpi, had severe depres-
sion, loss of appetite, nasal discharge, excessive salivation,
respiratory distress, facial edema, low body temperature,
abnormal gait and loss of balance. Gross pathological
findings of these two deer was mild but consistent with
BTV infection and included hemorrhages in the spleen,
kidney, and intestine, interstitial edema in the lungs, and
mild accumulation of fluid in the pericardium (deer #6
only). Histopathological findings included mild, chronic
portal hepatitis, mild white pulp lymphocytolysis and
lymphoid depletion of the spleen, and severe necrotizing
bronchopneumonia. No gross pathology was seen in deer
euthanized at 28 dpi (n = 4), the end of the experiment.

Clinical signs of disease were not observed in the two
sham inoculated negative control deer which were housed
with the inoculated deer. Additionally, no BTV RNA was
detected in blood or tissue samples confirming, as
expected, that BTV-8 was not transmitted between WTD
by direct contact.

3.2. Molecular analysis

The BTV-8/NET2007/01 washed blood cell inoculum
was determined to be 5.78 log10 particles/ml (6 � 105/ml)
by qRT-PCR and RNA/virus particle determinations. Thus,
with the inoculation of 1 ml at two sites, the deer received
a total of 6.08 log10 particles (1.2 � 106). Viremia in
inoculated deer, as detected by qRT-PCR, started as early as
3 dpi, peaked from day 7 to 15 and persisted through day
28 in 3 of 4 surviving deer (Fig. 2). Blood virus titers in the
two deer euthanized on day 8 (#15 and #23) was 6.40 and
6.56 log10 particles/ml, respectively (Fig. 2A). Peak viremia
in the two deer euthanized during the peak of clinical
disease (#21 and #6) was 7.4 and 8 log10 particles/ml on 10
and 12 dpi, respectively (Fig. 2B). The highest viremia
detected at the end of the study (day 28) was 6.13 log10

particles/ml (deer #16; Fig. 2C).
As expected for a viremic infection, the distribution of

BTV-8 in tissues as detected by qRT-PCR was widespread. In
the two deer euthanized on day 8 (#15 and #23) viral RNA
was detected in all tissue homogenates tested (liver, spleen,
lung, heart, kidney, intestine, mandibular lymph node,
mesenteric lymph node, and adrenal gland). The highest
titers (log10 particles/ml of homogenate) for #15 and #23
were seen in the heart (7.64 and 5.73), lung (5.57 and 7.32),

Table 1

Peak clinical signs from individual deer during challenge with serotype 8 of bluetongue virus.

Deer Depression Loss of appetite Oronasal discharge Respiratory distress Facial edema Temperature (8C)b Peak viremia (log10/ml)c

6 3a 3 2 1 3 40.6 7.0

7 2 3 0 0 2 39.6 7.0

14 0 3 1 1 2 40.1 6.4

15 0 0 0 0 0 41.2 6.4

16 0 3 0 0 0 39.6 6.7

20 2 3 0 2 1 40.8 6.7

21 2 3 3 3 3 40.6 6.4

23 0 0 0 0 0 40.2 6.6
a Peak clinical signs using a scale from 0 to 3: 0 = Absent, 1 = Mild, 2 = Moderate, 3 = Severe condition.
b
 Rectal temperatures in Celsius, average daily temp of control deer 39 8C.
c Peak viremia as calculated by qRT-PCR.
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 liver (6.05 and 6.84), respectively (Fig. 3A). For the two
r euthanized during the peak of their clinical disease
1 at 12 dpi and #6 at 15 dpi), viral RNA was detected in all
ues tested with the highest titers (log10 particles/ml of

ogenate) seen in the spleen in both deer (9.62 and 8.98,
pectively) (Fig. 3B). At day 28, there was no consistent
tern of viral tissue distribution and related viremia in the
r surviving BTV-8 inoculated deer. Viral RNA was
ected in only a single tissue in the three remaining
mic deer; the spleen of #7 (5.47), the lung of #14 (5.18)

 the mesenteric lymph node of #16 (7.40 log10 particles/
 (Fig. 3C). Whereas, the deer with no detectable viremia

 day 21 through 28 (deer #20) showed the greatest
ribution of persisting viral RNA with detection in all
ues tested except the intestine.

 Virus isolation

Infectious virus was isolated from the blood of all eight
culated deer in CPE flasks and confirmed as BTV-8 by

 and NS1 qRT-PCR (data not shown). Additionally, a
1 nucleotide sequence of the BTV-8 serotype specific

VP2 serotype specific gene obtained from the blood of deer
#15 (8 dpi) had 99.5% identity (100% similarity) to the
original BTV-8/NET2007/01 inoculum.

3.4. Serological analysis

Antibody specific to BTV was detected by the antigen-
capture cELISA in the serum of all experimentally infected
WTD (Fig. 4). Sera were scored positive for BTV antibody if
the PI was �50%, since a lower PI could increase the chance
of including false positives. Antibody responses in the WTD
were detected as early as 8 dpi and as late as 12 dpi, with
the majority of animals showing at least 70% cELISA
inhibition by 10 dpi. None of the experimental animals
were positive for antibody to the related serologically
cross-reactive EHDV (data not shown).

4. Discussion

The recent incursion of BTV-8 into Northern Europe and
the UK has highlighted the risk that countries face for
accidental or intentional introductions of serotypes with

1. Clinical bluetongue virus serotype 8 disease in white-tailed deer. (A) facial edema, excessive salivation, nasal discharge, conjunctival erythema (#21,

i; (B) anorexic, abnormal gait, loss of balance (#6, 15 dpi); (C) facial edema, conjunctival erythema (#21, 12 dpi; (D) respiratory distress as indicated by

 mouth breathing (#21, 12 dpi).
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unknown virulence into naı̈ve domestic and wild ruminant
herds. With varying virulence, and little to no cross
protection between outbreak isolates, the 26 serotypes of
BTV are a constant disease threat to North American
livestock and wildlife. Susceptible hosts and Culicoides

competent for the endemic BTV serotypes are found

throughout the country which results in an environment
very favorable for the already identified (Ostlund, 2010) or
new exotic isolates to become established upon introduc-
tion via infected midge or animal.

Because BTV vectors (Culicoides spp.) feed on both wild
and domestic ruminants, the wildlife-livestock interface is

Fig. 2. Rectal temperatures (line) and viremia (bars) as detected by qRT-PCR of white-tailed deer inoculated with bluetongue virus serotype 8. Day of peak

clinical disease for each animal is indicated with an arrow. (A) Deer euthanized at 8 dpi (#15 and #23) during the expected peak of viremia; (B) deer

euthanized at 12 dpi (#21) and 15 dpi (#6) during the peak of clinical disease; (C) deer euthanized at 28 dpi. Normal temperature 39 8C (asterisk).
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itical factor in the epidemiology of outbreaks and risk
essment in terms of viral amplification and geographic
ribution (Drolet et al., 1990; Garcia et al., 2009; Garcia-
anegra et al., 2011). This is the first report of
erimental infection of North American WTD with the
opean strain of BTV-8. Our findings demonstrate that
-8 infection produces moderate to severe clinical
ase and that during the peak of both viremia and
ical disease, virus is widespread in tissues. At peak
ical disease (deer #6 and #21), titers of virus as
ected by qRT-PCR were higher in some tissues than in
 blood. This was especially the case for deer #21 with

 3.5 (lung) to 344 (spleen) times more virus in 1 ml of
ue homogenate than 1 ml of blood at the time of

necropsy. These results suggest active virus replication in
several tissues at the peak of clinical disease.

Of the four surviving deer at day 28, three had
detectable viremia. However, fluctuations during the 28-
day study, as well as animal to animal variation were seen.
In deer #20, viral RNA persisted in all tissues except the
intestine without a corresponding viremia. A drop in
viremia was also seen in deer #14 and #16 from 17 to 24
days followed by a recovery on day 28. This trend may
suggest a cyclical viremia where virus or viral RNA
persisted in some tissues, but was shed and cleared in
peripheral blood intermittently after peak clinical disease.
Oscillating patterns of BTV viremia, as detected by qRT-
PCR, have also been shown in sheep (Batten et al., 2012),
cattle (Di Gialleonardo et al., 2011) and camels (Batten
et al., 2011). A longer term study would be required to
ascertain this trend and whether it may have diagnostic
implications where virus persists in the absence of viremia.
It is possible that immune responses may influence tissue
and blood clearance of virus, but the mechanistic basis for
this variable immunity is not understood.

Although seroprevalence studies of wildlife in Europe-
an outbreak areas have shown the presence of BTV-8
specific antibody in red (Cervus elaphus), fallow (Dama

dama) and roe (Capreolus capreolus) deer, little to no
disease was observed suggesting these wildlife species
may have acted as subclinical reservoirs (Linden et al.,
2008; Conraths et al., 2009; Garcia et al., 2009; Falconi
et al., 2011; Garcia-Bocanegra et al., 2011). This was
substantiated in experimental BTV-8 infections of red deer
(Lopez-Olvera et al., 2010; Lorca-Oro et al., 2012) and is
similar to seroprevalence reports and field observations for
BTV-4 in Spain (Ruiz-Fons et al., 2008; Rodriguez-Sanchez
et al., 2010; Garcia-Bocanegra et al., 2011).

In general, North American WTD appear to be much
more susceptible to BTV infection and development of
clinical disease (Howerth et al., 1988; Parsonson, 1990;
Quist et al., 1997; Stallknecht and Howerth, 2004) than
Eurasian deer species as described above. Prior to this
study, however, it was not clear whether infection of WTD

3. Distribution of bluetongue virus serotype 8 in tissues of

rimentally infected white-tailed deer as detected by qRT-PCR. (A)

r euthanized at 8 dpi (#15 and #23) during the peak of viremia; (B)

 euthanized at 12 dpi (#21) and 15 dpi (#6) during the peak of clinical

ase; (C) deer euthanized at 28 dpi. (For interpretation of the

rences to color in this figure legend, the reader is referred to the

 version of the article.)

Fig. 4. Antibody response as detected by competitive ELISA in serum of

white-tailed deer inoculated with bluetongue virus serotype 8. Deer #15

and #23 were euthanized on day 8; deer #21 on day 12; deer #6 on day

15; deer #7, 14, 16, and 20 on day 28. Deer #8 and #13 (negative controls)

were euthanized on day 28. Sera were scored positive for BTV antibody if

the PI was �50%. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of the article.)
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with the European strain of BTV-8 would result in
subclinical disease as seen in Europe, clinical disease
similar to North American domestic serotypes, or more
severe disease levels. Falconi et al. (2011) reported that
BTV serotype 8 had previously been shown to cause clinical
disease in WTD. Their referenced report (Vosdingh et al.,
1968) actually states that BTV-8 ‘‘strain’’ was used, not BTV
serotype 8. This was the California BTV strain 8 isolate from
USDA-ARS, which subsequently typed as BTV-10 (Yu et al.,
1987). More recent reports using this strain refer to it as
‘‘CA-8 BTV-10’’ or ‘‘BTV-10; BT-8 strain’’ (Wilson et al.,
1990). Thus, this is the first report of experimental
infection of North American white-tailed deer with BTV
serotype 8.

For this study, the BTV-8 inoculum used was infected
bovine blood from the first detected 2007 case of BTV-8 in
the Netherlands after overwintering. Although more
difficult to work with in some respects, recent isolates
from naturally infected animals are desirable for animal
infection studies, as there can be some degree of
confidence that cell passage-associated mutations and in

vitro fitness selection have not occurred and will not affect
the resulting infectious process. However, the lack of being
cell culture adapted makes cell culture-based titrations of
blood and tissues impossible. In terms of epidemiological
predictions, care should always be taken in extrapolating
qRT-PCR quantitation and subsequent particle calculations
to infectious virus titers and duration of viremia.

Understanding the degree to which our wildlife and
livestock species are susceptible to BTV-8 is critical in
determining relevant epidemiological assessments and
risk analyses for the USA. WTD are the wildlife species
most often affected by endemic serotypes of BTV, and are
therefore the likely wildlife species to play a role in the
ability of BTV-8 to become established. Although more
clinical disease was observed in WTD compared to that
seen with both natural (Conraths et al., 2009; Falconi et al.,
2011; Garcia-Bocanegra et al., 2011) and experimental
(Lopez-Olvera et al., 2010; Lorca-Oro et al., 2012) infection
of Eurasian deer species, it was consistent with BT disease
levels previously reported for North American domestic
serotypes (Hoff and Trainer, 1978; Stallknecht et al., 1995;
Quist et al., 1997). Our findings suggest that should BTV-8
be introduced in the USA, WTD would be expected to act as
clinical disease sentinels and survival rates would be
sufficiently high to act as significant virus amplifying
reservoirs for subsequent transmission of virus by
Culicoides spp. to livestock and other wildlife species.
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